Differential Effects of Ginsenoside Metabolites on HERG K+ Channel Currents
نویسندگان
چکیده
The human ether-a-go-go-related gene (HERG) cardiac K(+) channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside Rg3 regulates HERG K(+) channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG K(+) channel activity. In the present study, we examined the effects of ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) on HERG K(+) channel activity by expressing human α subunits in Xenopus oocytes. CK induced a large persistent deactivating-tail current (Ideactivating-tail ) and significantly decelerated deactivating current decay in a concentration-dependent manner. The EC50 for persistent Ideactivating-tail was 16.6±1.3 μM. In contrast to CK, PPT accelerated deactivating-tail current deactivation. PPD itself had no effects on deactivating-tail currents, whereas PPD inhibited ginsenoside Rg3-induced persistent Ideactivating-tail and accelerated HERG K(+) channel deactivation in a concentration-dependent manner. These results indicate that ginsenoside metabolites exhibit differential regulation on Ideactivating-tail of HERG K(+) channel.
منابع مشابه
Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K+ and KCNQ1 K+ channel currents
Channels formed by the co-assembly of the KCNQ1 subunit and the mink (KCNE1) subunit underline the slowly activating delayed rectifier K(+) channels (IKs ) in the heart. This K(+) channel is one of the main pharmacological targets for the development of drugs against cardiovascular disease. Panax ginseng has been shown to exhibit beneficial cardiovascular effects. In a previous study, we showed...
متن کاملEffects of Ginsenoside Metabolites on GABAA Receptor-Mediated Ion Currents
In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances γ-aminobutyric acid (GABA) receptorA (GABAA)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on GABAA receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant GABAA rece...
متن کاملEffects of Protopanaxatriol-Ginsenoside Metabolites on Rat N-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents
Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of N-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate N...
متن کاملInhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on GABAC Receptor-Mediated Ion Currents
Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The γ-aminobutyric acid receptorC (GA...
متن کاملBlockade of the HERG human cardiac K(+) channel by the antidepressant drug amitriptyline.
1. Amitriptyline has been known to induce QT prolongation and torsades de pointes which causes sudden death. We studied the effects of amitriptyline on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on the rapidly activating delayed rectifier K(+) current (I(Kr)) in rat atrial myocytes. 2. The amplitudes of steady-state currents and tail currents of HERG we...
متن کامل